ECE 321C Electronic Circuits

Lec. 6: BJT Modeling and re Transistor Model (Hybrid Equivalent Model) (3)

Instructor

Dr. Maher Abdelrasoul http://www.bu.edu.eg/staff/mahersalem3

Complete Hybrid Model

Complete h-model

Current Gain, $A_i = I_o/I_i$

$$I_{o} = h_{f}I_{b} + I = h_{f}I_{i} + \frac{V_{o}}{1/h_{o}} = h_{f}I_{i} + h_{o}V_{o}$$

Substituting $V_o = -I_o R_L$ gives

$$I_o = h_f I_i - h_o R_L I_o$$

 $I_o + h_o R_L I_o = h_f I_i$

 $I_o(1 + h_o R_I) = h_f I_i$

Rewriting the equation above, we have

and

$$A_i = \frac{I_o}{I_i} = \frac{h_f}{1 + h_o R_L}$$

Voltage Gain, $A_v = V_o/V_i$

$$V_i = I_i h_i + h_r V_o$$

$$I_i = (1 + h_o R_L) I_o / h_f$$
and
$$I_o = -V_o / R_L$$

$$V_i = \frac{-(1 + h_o R_L) h_i}{h_f R_L} V_o + h_r V_o$$

$$I_v = \frac{V_o}{V_i} = \frac{-h_f R_L}{h_i + (h_i h_o - h_f h_r) R_L}$$

Complete h-model

Input Impedance, $Z_i = V_i/I_i$

 $V_{i} = h_{i}I_{i} + h_{r}V_{o}$ $V_{o} = -I_{o}R_{L}$ $V_{i} = h_{i}I_{i} - h_{r}R_{L}I_{o}$ $A_{i} = \frac{I_{o}}{I_{i}}$ $I_{o} = A_{i}I_{i}$ $Z_{i} = \frac{V_{i}}{I_{i}} = h_{i} - h_{r}R_{L}A_{i}$ $Z_{i} = \frac{V_{i}}{I_{i}} = h_{i} - \frac{h_{f}h_{r}R_{L}}{1 + h_{o}R_{L}}$ $Z_{i} = \frac{V_{i}}{I_{i}} = h_{i} - \frac{h_{f}h_{r}R_{L}}{1 + h_{o}R_{L}}$

Output Impedance, $Z_o = V_o/I_o$

$$V_s = 0$$

$$I_i = -\frac{h_r V_o}{R_s + h_i}$$

$$I_o = h_f I_i + h_o V_o$$

$$= -\frac{h_f h_r V_o}{R_s + h_i} + h_o V_o$$

$$Z_o = \frac{V_o}{I_o} = \frac{1}{h_o - [h_f h_r/(h_i + R_s)]}$$

5

Hybrid π Model

Hybrid π Model (1 of 3)

It includes parameters that do not appear in the other two models primarily to provide a more accurate model for high-frequency effects.

FIG. 5.123

Giacoletto (or hybrid π) high-frequency transistor small-signal ac equivalent circuit.

Hybrid π Model (2 of 3)

FIG. 5.123

Giacoletto (or hybrid π) high-frequency transistor small-signal ac equivalent circuit.

- The resistance r_{π} (using the symbol π to agree with the hybrid π terminology) is simply βr_{e} as introduced for the common-emitter r_{e} model.
- The output resistance r_o is the output resistance normally appearing across an applied load.

Hybrid π Model (3 of 3)

FIG. 5.123 Giacoletto (or hybrid π) high-frequency transistor small-signal ac equivalent circuit.

- The resistance r_u (the subscript u refers to the *union* it provides between collector and base terminals) is a very large resistance and provides a feedback path from output to input circuits in the equivalent model.
- All the capacitors are stray parasitic capacitors between the various junctions of the device.
- The controlled source can be a voltage-controlled current source (VCCS) or a current-controlled current source (CCCS), depending on the parameters employed. $\beta I'_b = \frac{1}{r_e} \cdot r_e \beta I'_b = g_m I'_b \beta r_e = g_m (I'_b r_\pi) = g_m V_\pi$

9

Variations of Transistor Parameters

Variations of Transistor Parameters (1 of 3)

 The parameter h_{fe}(β) varies the least of all the parameters of a transistor equivalent circuit when plotted against variations in collector current.

FIG. 5.124 Hybrid parameter variations with collector current.

Variations of Transistor Parameters (2 of 3)

Note that *hfe* and *hie* are relatively steady in magnitude with variations in collectorto emitter voltage

Hybrid parameter variations with collector-emitter potential.

Variations of Transistor Parameters (3 of 3)

 All the parameters of a hybrid transistor equivalent circuit increase with temperature.

FIG. 5.126

Hybrid parameter variations with temperature.

Troubleshooting & Practical Applications

Troubleshooting

• In general, if a system is not working properly, first disconnect the ac source and check the dc biasing levels.

Using the oscilloscope to measure and display various voltages of a BJT amplifier.

PRACTICAL APPLICATIONS

FIG. 5.130 Audio mixer.

o 12 V

 $47 \text{ k}\Omega$

 $\sim \sim \sim$

10 µF

FIG. 5.133

╤

÷

 $3.3 k\Omega$

20 µF

 $\beta = 140$

 $A_v \cong -319.7$

-0 V_

